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settings. In the simulation with reatlife items, D2 showed very few cases of obvious underestimation and practically no cases
obvious overestimation. With certain restrictions discussed in the article, D2 seems to be a good alternative for these clas:
estimators not only with dichotomous items but also with the polytomous ones. In general, the magnitudes of the estimatesb®
are higher than those by Rit, Rir, ah polychoric correlation and they seem to be close of those of-kand polyserial correlation
coefficients without out-of-range values.
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Introduction

Item discrimination and the deterministic pattern

Item discrimination power (IDP)? one of the three essential parameters of a test itemis classically defined as the
efficiency of a single item to discriminate between lower and higher-scoring testtakers (see Educational Testing
Service[ET§h ¢menn , EOR c¢nmyn , 1T O0A O .1 OEAEh pwoyn -AAS$ITAIA
that this loose definition is not very practical while assessing the possible undeand overestimation produced by
different estimators of IDP in the reallife settings. Hence, he discusses an operational definition of IDP related to the
concept ofdeterministic item discrimination . Deterministic item discrimination refers to the pattern in which the score
explains perfectly the behavior in the item, and then we expect to see the perfect explaining power between two

variables (rf(Y =1) that implies the perfect association (7,, =1). In other words, when the latent trait can predict the
behavior of the testtakers in the test item in a deterministic manner thetest item is ultimately reliable. In practical

settings related to item analysis, the perfect explaining power is achieved when tloeder of the cases both in the item 3
and the scoreA OA EAAT OEAAI 8 (AT AAh - AOORI O0OT1T AT AAEET AO OEA O
test-takers by the score, or the measurement scale, the item can discriminate the lower performing te¢akers from the
higher performing test-takersinA AAOAOI ET EOOEA [ AT T AO06 j-AOORI OOO0TTATh ¢
When it comes to detecting the ultimate IDP, two widely used classical estimators of IDP, itgwotal correlation ( 7, ,
Rit; based on Pearson, 1896) and itepnest correlation (rgP , Rir; Henrysson, 1963), are not strong; they cannot reach

the ultimate value r,, =1 because of the mismatch of the dimensions of the item and the score, and the
underestimation of IDP may be drastic if the ittt AEAZEAOI OU EO AQOOAI A j Ascs -AOD
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2020b). Two other estimators of IDP, bi and polyserial correlation coefficients, by using standard procedures of
estimation (see Drasgow, 1986), tend to give obvious overestimates (cof-range values) whenr , and item variance

are high (e.g. Lord &Novick, 1968). This is specifically true with the deterministic patterns with nosnormal or even

AEOOOEAOOEITT ET OEA OAiI OA j OAA 11 0A OAAAT O 1 EOCAOAOOOA A
superior alternatives to I ox and I polychoric correlation (Pearson, 1900; 1913), cannot reach the ultimate IDP by

using standard procedures of estimation because of the technical reasons. In the deterministic patterns, one of the
OOOPAOCETI BOMINADBADADDEAOOR pwecn OAA - AOORI OOOITAT A cmg
AT A Mph EO EO OOAAI A xEOE AQOOAI A OAIOAO j.AxOI1Th ¢nncQ
real IDP thanRit andRirj - AOORT OOOT 1T AT h ¢ngnAQqs 4EAOA AOA AAOAT AAO E
when the sample sizes may be small and the normality in the score cannot be ensured (see examples in Aslan & Aybek,

3OAOEOOEAAT 11T AAT 1 AGAT O O61 311 A00OE $

Assume two ordinal observed variablegy (item) and X (score) that haver and s distinctive categories, respectively.
Within the measurement modelling settings, the observed valueg and x; are driven by a continuous latent variableq

common to both variables. The threshold values off for each category ing are denoted by g and in Xby l‘j . Then, the
variable g is related to g so thatg=g, if g, ¢ g<,,iE p hRaadX8R, if £, ,¢ g<,,JE p h Sasfilusttated
in Figure 1. We definethat g, = f = -and g, = [ = + andweassumethag, <g <g and x <X <X.

g 4

Figure 1. A latent variableg categorized into two ordinal scales and the number of times tieservation (g, %) is
obtained in the sample (gnx)

From the traditional viewpoint of correlation coefficients related to the item analysis, the observed correlation between
the interval-scaled variablesg and Xis itemztotal correlation ( r oX ), the observed correlation between the binang and

ordinal Xis rank-biserial correlation ( 7 ;), the inferred correlation between the latentg and observedXis polyserial
correlation ( 7 ox ), and the inferred correlation between two latent variables is polychoric correlation fq q). In the last,

within the measurement modelling settings, we would expect to obtain perfect correlation, and the furtherqq is from

1, the more measurement error is included in the measurement instruments, including both items aritle score. We

note that the correlational viewpoint to the item discrimination is based orcovariancebetween the item and the score.

&O0i i OEA OEAxDPI EI O OAI AOAT O x EME EGHH @ AKED GE Alddh &GadE0£DIAL
1938), and GoodmangKruskal G (Goodman & Kruskal, 1954), item discrimination is approached from therobability



International Journal of Educational Methodology/a299

OEAx DI ET (Dastiddteb thep@bability (1) that two randomly chosen pair of testtakers have the same order in
both the item and score (see & der Ark & Van Aert, 2015). The probability for the same order is

o

RCc a .. . v e
Pr=a aRead gt a;d (1a)

r=1c % gir>jc> irj<c <

and the probability for the opposite order is

R C 2
Po=Ad ARRe ad alt a;d (1b)
r=1c % (;ir>jc< irj<c >
The probabilities of tied pairs related to rows and columns arep, and P respectively.The latenty proportions the

probabilities of P and Q with maximal possiblenumber of pairs to the samedirection (including also the tied pairs).
Hence,the relevant direction related to the article, that is, the latent) conditioned so that the column factor explains
the row factor is defined as

d= Pp - :B _
Pt B+

31T A0OGs $ ET OEA POAAOEAAI EOAT AT AT UOGEO OAOGOET CO

2

31 | AD épproximates the latent] &he computational forms of 3 1 | AD &é& usually expressed by using the
concepts ofconcordance and discordance between the values gfand X By using the concepts oP and Q, the specific

coefficient relevant to item analysisD givengin conditon of Xa  OE A O ED(()gﬁ X)?J, hds A €n@pfiiied form of
2(P-
D(g|X)= D _—.ﬁ 3
N2 - a (nz)

i=1

where Ny is the number of cases in the categorieg = i related to item g and p:a n, le and Q:a n, Nj-
i,] 1]

i -AOORI OOO0OTTATh ¢mpxAn 3EACAT o #AOOAI 1 Al h D ghisyspdiatell 8sOA G
D(X\ g)). Nij+ refers to the number of pairs in the cells below and tohe right of the celln;. Correspondingly, Ni} refers
to the number of pairs in the cells below and to théeft of the celln;. The form is simplified because the values é¢fand
QAOA AAI AOI AGAA T1T1U ET TTA AEOAAQGEITTN i1 O0OA AlTibpl EAAOAA
OAI PI ET ¢ OAOEAT AA Thel statistioaDd grdpértieOdi3 1A OXMIEES Been discussed, for example, by
Agresti (2010), Newson (2002; 2006; 2008) and Siegel and Castellan (1988), and practical procedures, for example, by
-AOORI OOOTTAT jc¢mpxAQs
Because of Eq. (3), Someﬁ@(g\ X) tells the proportion of the logically ordered testtakers in the item after the cases
AOA 1T OAAOAA AU OEA OAI OA8 4EEO E£EOO xAl1 xEOE OEA AAEE
correlation coefficient, D ( g| X ) varies betweenzl and +1. In the item analysis settings, thealue D (g| X)=+1
indicates the positive deterministic pattern: after ordered bythe score all the testtakers in the higherranked
subsample(s)j in the item are (correctly) ranked higher than those in the lower subsample(s). The vaIueD(g\ X)=z

1 indicates the ultimately pathological situation that all the cases in thtiower subsample(s)i would be ranked higher
than those in the higher subsamplg. The valie D (g\ X) =0 refers to a situation that the number of correctly ordered

)6 EO CiiT A O 171 6A OEA OAAIEICIDDPRAET EADERQY T RODNREDOOORRAOAANTONA®E |
conditions, the direction of condition(g‘x) OOOAIT 1 Ugir cdndiifiodof Xb h O fg 55 Gepdhd@ht on&d that is O @ependent owever, within
OEA 11 OAOGEIT OAb@@ﬁEOOK@‘I@]ﬁbAb@AT 06 | OAA - AOORI OOOITTAT R ¢mpxANn . AxOil

1988).Inthisarticle,thespecificnotationD(g‘x)OA/EA@@AF)K? BDAT 66 xEEAEh ET OEA I
IBM SPSS as well a8l EAOAOEAOh x71 01 A AA AAITAA OOAI OA AADPAT AA

-AOORI 6OOTTAT jgnmegmAQs

66DPBOO T &£ OITA ¢
i 668 3AA OEA pO
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i OATT AT OAGADAQO OABROAT 6 OEA EIT Al OO Adkdld dud, hefrs, Are Atdm candok E O A

discriminate the test-takers from each other at all Basically, the interpretation in the magnitude of the estimates by
D(g‘ x)is the same as that i, with the note that, in reatlife datasets, r;, cannot reach perfect +1 ozl while

D(g| X)can.

By using a comparison with real E £ZA EOAT Oh - AOORT 6O6OT 1 Al D(jg\c)(l)t,c(Dm@nﬁpfo@Erdl),x AA

would be a good alternative for the generally used classical estimators of IDP. This is specifically true with binary items

in relation with I ox and I 8S well as the family of bi and polyserial correlations (rg, r,s) and the polychoric

correlation coefficient (r.) (Pearson, 1900; 1913). In comparison with/ ;. and /", , D underestimates IDP less and

P
is stable also with the items with extreme difficulty, whichrgX and I May radically underestimate the IDP of. In

comparison with ¢ and r g, D does not give obvious overestimates nor obvious underestimates as,; and 7,4 may

Ps’
easily give. In comparison with/ ., D relates with the known composite of tems and score, and this information can
be used in further analysis whiler . refers to an unknown, unreachable, and hypothetical composites that are difficult
to use in the analysis. In comparison with some other directional coefients such as GoodmdfKruskal lambda and tau

i TTATAT O +O0O00EATh pwutq H) (PeadsdnA 08B 1905)D dArD detech thel uEimERtA E AT (

discrimipation iQ ~the itgm yvhjle lambda, tau, and eta can detect the ultimate discrimination in thescore.

i -AOORI OOOTTATh ¢megmA8qQ

Although D OAAT 6 01 AA A OOODPAQEN P, inthed Birady A43& O the cathparison by
-AOORT OOOIT 1 AD apppatett to iadeCehmajor practical challenge relevant to polytomous items. Although
reaches the ultimate values of IDP accurately, the estimates underestimate the IDP in an obvious manner when the
number of categories in the maginal distribution of the item exceeds three and when the discrimination is not perfect
0O TAAO PAOEAAOD j - AOOR I dés@lildciAdoH; Newsgnru200R). This As elAboréxéd in' what
follows.

Underestimation in Din the empirical datasets

-AOORT 6OOT T AT je¢nmegmAq 11 OAA OEA 1 A DEWItD éal-woAdD dathsels. OThel £
underestimation is strictly related to the number of categories in the items scale, that is, to the degrees of freedom of
the marginal distribution of the item (df(g) =r z 1). When the number of marginal categories in the item exceeds three
(df(g) > 2), I 4% appears to be superior taD reflecting IDP (Figure 2).

Average level of item discrimination 4 Average level of item discrimination
1,00 dig) 100 1Kig)
0,95 095 1\ AD real (modelled)
0.90 0.90 OR real (modelled)
- real (moaelle
0,85 P i 0,85
x 0,80 AA x 0,80
20,75 &% 2 0,75
o~ A n -’
0,70 0,70
0,65‘ --&--Average D 0,65
0,60 —O— Average R 0,60
0,55 0,55
0,50 0,50
1234567 8 91011121314 0 0102030405060,7080,9 1
df(g) 1/df(g)

Figure 2.Underestimation in D in relation withfgX (R) as a function of df(g) and 1/df(g)

The right-hand side graph in Figure 2 illustrates a practical peculiarity embedded im'g>< as well as inall estimators of

IDP in item analysis settings, that the estimate approximates perfect 1 the less there are items in the test and the more
there are categories in the items. The phenomenon is obvious when we recall that, in the measurement modeling

C
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settings, the latent variable[ is common for both the item and the score (see Figure 1), and that the association of item

g and scoreXis determined mechanically because the score is a compound of the items. The latter was the reason why
Henrysson (1963) suggestd his procedure RIir); 7, E O AEAOAAOAOEUAA AO OODPOOEI 601 U
won (i xAOA O &1 OAEATAh pwegh B8 xopn 711 Ah panepiter th®8 ¢
correlation between the item & A OEA OOAI OAd &I Oi AA AU OEEO rEOBIH xI
Correspondingly, the more we have items comprising the test score the further Pearson correlation between a single
item and the score tends to deviate from 1 eveifi the score would explain perfectly the behavior in the item. Obviously,

this phenomenon of approaching the value 1 does not make sense outside~th9 measurement modeling settings but, in
what follows, this plays a significant role in deriving the dimensioA T OOAAOET ID. O1 311 A0OOS

¢
;
¢

51 AAOAOOEI AGETT ET 311 A0OOG8 $ xEOE PIT1UOITT OO EOGAI O A&EOI I
Although D underestimates IDP in obvious manner, the interpretation of the matter is somewhat challenging because
PMC andD tell about different information of the relation of the item and the score discussed above. While indicates

covariation between the item and scoreD indicates probability that two randomly chosen testtakers have the same
order in both the item and score or theproportion of logically ordered testtakers in the item after they are ordered by
the score. Anyhow, underestimation irDin relationto r ,EO A@DAAOAA AAAAOCOA 1 £ ' OAET A

related to the connection of Kendall TatA h 3 T D, And ®éarson correlation discusse by Kendall (1949) and
Newson(2002). Assuming two independent variables<and Y with continuous scales (implying no ties) sampled from a )
bivariate normal distribution, Kendall TauA ANOAT @83 BUEADBGS' OAET A8 O OAI AOCEDT CE
and r,, as:

i@
r =SiNas=D . 4)
XY 5

From Eq.(4) we know that the values byD of 0,°1/3, °1/2, and ° 1 correspond to the values by, of 0, ° 12,

° ]/ﬁ and ° 1, respectively (see Figure 3). Then, in the case of two normally distributed continuous variables, except
for the extreme values®1 and 0, the magnitude ofr, is greater than that ofD. Consequently, because of Eq. (4), and
becausergx always underestimates association, the estimates Hy are expected to underestimate IDP more thamr o
when the estimate byD differs from 0 and ° 1 and the number of marginal categories in the item is high.

+ 1
—R(XY) Py = =
2
—Somers' D \/_
65
S p-1
T 2
o
g 0
i} -0,5 D 0,5 1
o
0
S 0.5
a
1
Somers' D

Figure 3.Relation of Pearson correlation Rq AT A  3with doidudus gariables X and Y

Because of the obvious disadvantage iD with the polytomous items to underestimate IDP even more tharrgx,
-AOORI 6060TT AT jcmemAQq OBCOQALBCOAMEARBT ADDAERAAXOBIOEDI oE AA
O000pACEal AOBRDLPed HDIET AET AOU AAOA@RROD OGARIAM OEA TA OO0O0PAOE
the polytomous cases. As far it is known, such correction has not been proposed yet. The aim of the article is to derive a
dimension-corrected version of D for the measurement modelling settings to reduce the obviousinderestimation
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obtained by Din the polytomous datasets.

Research questions

This article derives a dimensioncorrection version of D for the item analysis settings. After the derivation, the
following questions are asked:

1) What are the general characteristics of the new coefficient in comparison with oo T I andr,.?

r
BS®' ' PS’
2) What is the sampling variance andtandard error of the new coefficient?
3) To what extent the new coefficient produces obvious underestimates?
4) To what extent the new coefficient produces obvious overestimates?

Methodology

Research design

4EA AT OOOA 1T £ OGEA OOOAU -Hk®odDOSAVWEEDAOEOERCT A ADEMIIRWAET E
datasets with different number of testtakers (N), test lengths k), difficulty levels (p), reliabilities ( & ), and degrees of
freedom in the itemdf(g) =r z 1, and in the scoradf(X) =sz 1. The datasets and items are presented in the next section.

After the derivation of the new coefficient, the asymptotic sampling variance and standarerror are derived and a
numerical example of the use of the coefficient is given with the comparison with the relevant benchmark coefficients.

The general characteristics of the new coefficient including the behavior in the extreme datasets, its limitsvesll as the
potential over- and underestimation estimation are studied.

Finally, the advantages, limitations and possible ways to utilize the coefficient are discussed and suggestions for the
further studies are given.

Datasets used in the derivation

The dimension correction toDis derived by using 13,392 realworld items from 1,296 datasets and the knowledge of
the pattern of underestimation related todf(g) illustrated in Figure 2. The datasets used in the derivation are formed by
different combinations of randomly selected testakers from a nationatllevel dataset of 4,000 testakers of a
mathematics test for grade 9 with 30 binary items Finnish Education Evaluation Centr¢ FINEEQ, 2018). The difficulty
levels of the items in the original datasetanged from 0.24 <p < 0.95 with the average difficulty level of p = 0.63, the

item discrimination ranged from 0.332< r , <0.62'with the average 7, =0.481, and the lower bound for the

reliability was | = 0.885 and, if using the maximal reliability,r,,,, =0.895. By forming different combinations of single

items and their compilations, the original reallife datasets (87%) and some artificial datasets (13% of tests) to cover
the very difficult and extremely difficult tests? were used to prepare 1,296 tests with variatingN (50z100z200), k (27
30), P (0.08z0.96), df(g) (1z15), df(X) (12z27), and 4 (0.74z0,98). Forming of the dataset in the derivation is

AAOAOEAAA ET -AOORI OOOITTAT jg¢gmgmAQs

Table 1 shows the essential characteristics of the tests in the derivation. Notably, the comparatively high reliabilities of
the tests with difficult and extremely difficult items (0.90120.956) reflect the fact that the artificial datasets appeared to
DOT AOAA 17 OAAI U EECEAO EOAI "Oi OAI-wold dixdsédd. Fni Eréttbrand i effebts | B
AOA AEOAOOOAA ET 3AAGEINTAxO-AN A £AERAIERRG A0 KAITTAO OEA ®OT AAOO
These 1,296 tests produced 13,392 items with varying item characteristics (Table 2). Notably, due to the process of
forming the datasets (see Appendix), the number of items with the small degreesfofedom in the item scale {f(g) <

4) are counted in thousands while the number of items with high degrees of freedordf(g) > 10) are counted in tens.

A
o}

Data analysis

The data manipulation was done in IBM SPSS 25 environment. The data mining tool, DeciSiocee Analysis (DTA) and
related CHAID algorithm (Kass, 1980; IBM, 2011), were used in seeking the -aifits of the variables that explained the
obvious underestimation for dimensioncorrected D. Manual calculations were done by using a standard spreadshee
software.
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Table 1.Selected characteristics of 1,296 tests used in the process

Average item n. of Nature of Average Average
difficulty ( p) datasets datasets I ag
0z70.299 47 Artificial 0.867 0.901
0.370.399 112 Mainly Artificial 0.869 0.927
0.470.499 57 Mainly Realworld 0.902 0.956
0.570.599 142 Realworld 0.818 0.833
0.670.699 721 Realworld 0.821 0.867
0.7z20.799 217 Reatlworld 0.822 0.863
Total 1,296 0.830 0.873

Table 2.Selected characteristics of 13,392 items used in the process

df(g) Number Average Average Average Average Average Number of
of items Rit Rir D res and r Fect items for .
1 7131 0.5063 0.4440 0.6284 0.6703 0.6551 2852
2 2715 0.6463 0.5658 0.6698 0.7471 0.7290 1080
3 1233 0.7266 0.6353 0.7035 0.8020 0.7781 494
4 658 0.7876 0.6818 0.7369 0.8490 0.8253 260
5 415 0.8230 0.7101 0.7535 0.8717 0.8496 169
6 335 0.8569 0.7456 0.7779 0.9044 0.8766 131
7 234 0.8832 0.7535 0.7996 0.9258 0.8959 97
8 123 0.9032 0.7697 0.8150 0.9467 0.9109 52
9 165 0.9197 0.7747 0.8363 0.9583 0.9277 62
10 140 0.9319 0.7623 0.8479 0.9667 0.9388 53
11 93 0.9427 0.7819 0.8606 0.9785 0.9471 37
12 74 0.9494  0.8062 0.8670 0.9878 0.9543 35
13z15 76 0.9488 0.7988 0.8637 0.9805 0.9537 32
13,392 5,354

The dataset of polychoric correlation coefficient comprises 5,354 items from 518 tests by balancitie item

from the real-world and artificial datasets

Principles underlying thenodelling of the dimensiorcorrected D

Based on our knowledge of the characteristics ob and r

gx ’

elements, four main notes (N) were made and four consecutive principles (P) were followed:

N1.Dgives a credible estimate of IDP whedf(gq E p
P1.Dshould be corrected only whendf(g) > 1.

i - AOGORT OOOI T Al F

¢n¢gmnAQs

underlying the process of deriving the correction

N2. r , always underestimates IDP in item analysis settings whereff (g) < <df(X)j - AOORT OOOI T AT h ¢ my

P2. The estimate by the dimensioworrected D should be higher than that byrgX to overcome the nature of the

obvious underestimation of IDP inrgX .

N3.Dtends to underestimate IDP the more the higher idf(gq
P3. Tte correction should produce more correction the higher is thef(g). However, with the deterministic patterns

the correction should reach the perfect value 1.

N4. In reatlife settings, D reaches the maximal value 1 whiler , doesl I O j - AOOR | 00601 1T A

2002).

j -AOORI 6OOI T AT h

¢mgmAN

h

P4. WhenD = 1, no correction is needed. Additionally, obviously, the dimensiecorrected D should not exceed 1.

Because there were no theoretical reasons or empirical evidence to assume tliatvould under- or overestimate IDP
when df(g) = 1 (P1), the initial model of the expected nomunderestimating value for D with the linear nature is based
on the assumption that there is no need to correct the estimates in the dichotomous case. Both the agstions of

A x

CTmp o

linearity of the non-underestimation and that the estimate byD would be true whendf(g) = 1 are questionable and can

be debated. All in all, we do not know whether the nomnderestimation should be linear or curvilinear in nature. In the

deterministically discriminating dichotomous dataset with an evenly distributed score, the underestimation is elliptic
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ET TAOOOA j OARA %N8 ¢co HLO OCOAITGAIBEAIOITIOA COMEIEA OE TGATEAOE T
cases, it is a trigonomatric function. Here the linear option is selected because of its simplicity.

Results

Modelling the dimensiorcorrected D

The dimensionAT OOA A OA D, I8er take®,ds based on modeling the underestimation in 13,392 empirical
values ofD. Figure 4illustrates the starting point of the modeling (cf. Figure 2). The dataset suggests that the model

with cubic nature - 1.02/df (g)3 +2.0;( df ( g)2 1.32df( g  @.Cexplains the observed distribution ofD by 1/df(g)

reasonably well (Figure 4). However, the model is somewhanisleading because the polynomial curve should go
through the points (1/df(g) = 0,D = 1) and (L/df(g) = 1,D = 0.6284). The first point obviously indicates that, with
indefinitely many categories in the item with maximal discrimination,D should reach thevalue 1 in the same manner as
the other coefficients would do. The second point refers to the expectation of the level whef{g) = 1.

Connection of D and 1/df(g)
1
0.9 @ df(g)=1
o 2
0,8 o 3
A 4
0,7 o s
2 06 o 6
g o 7
g 0,5 A 8
A o 9
4
0 m 10
0,3 e 11
) A 12
0, y =18+ 2%-1,3716x + 1 ® Df(g)=13-15
0.1 y =1,0179%+ 2,0096 1,3169x + 0,9542 Polinom. (D orig
----- Polinom. (D20)
0 ......... Do]‘ rus a
0 01 02 03 04 05 06 07 08 09 1
1/df(g)
Figure44 EA T OECET Al 1T AAT 1T £ 3dndkhO006 $ AT A ET EOE

The correction inD is based on combining the corrected thiredegree model of the observed average levels bfagainst
1/df (9) (D20, Eq. 5) and a linear model of the expected levels in varyingdf (g) (D21, EqQ. 6). The corrected modeDzo
of third grade passing through the points {/df(g) =0,D=1) and (1/df(g) = 1,D=0.6284) is:

_, 13716 . 2 1
©77 di(g) df(g) df(g)
. 03716 & 1 2 1 ®)
- df (g) i g) df(g)’ dffgf
¢
03716 1 1

where 0.3716 = 17 0.6284.

4EA T ACTEOOAA T &£ OEA O1 AAOAOGOEI AGET T EO OJeloiDi(Ds1) vias sketitcd OE .
be linear through the points @/df(g) = 0,D= 1) and (1/df(g) = 1,D = 0.6284) (see Figure 4). This theoretical level dd

in eachdf(g) is
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D, =1 0.3716 ©)

df (g)

The average level of discrepancy between the theoretical level and the observed level at each levdf(gf) is denoted
by De:

DE_DZl D20
_, 03716 & 03716 1 % 10 ™
d(9) @ di(g o(gF a9 9

and, hence, the initial correction foDis

14 1 ¢
D,=D D, B —+ g —— ¢ 8)
clf(g);;é di(g ¢

The initial model D, (Eq. 8) appears to be surprisingly good when it comes to increasing the average levelof
However, this model increases the magnitude of the estimates too high whdhis very high in the beginning; all
estimates exceeding the limit®f association are ofD >0.83C. Hence, in the second phase, a switch KID) related to the

principle P4 was added to the correction factoDe: (1 '|'D)3 D, . This switch turns the correction off in the case of
ultimate item discrimination when no correction is needed. An additional switci(df (g) 1) is needed to restrict the
effect of (1- D) only on items with df(g) > 1. Ater these, a possible correction factor could bédf (9)- 1) {1D) B.
The final suggestion as the dimensiod T OOA A O A Ris,thénf AOOS

_ (4 (9)-)8, 1 <
D,=D {1 B) éé a(g € ©)

df (9)

By using light algebra, Eq. (9) can be further modified into

D,=1{D B (A ] (10)

whereDOA £ZAO0O d(ggdnd AOOG

{ (11)

The correction in Eq. (10) is relevant to the positive values db8 " AAAOOA 1T £ OEA Om& indkedd OE AT
general form of D,, comprisng also the negative values db, is

D,=signD) {1 (ab§ D 1 (A1), (12)

that is, we first form the dimension correction for the absolute value ob as in Eq. (10) and then, if the originaD is
negative, we give the negative sign to the outcomB, appears to be very potential and its characteristics are studied in
what follows.

Asymptotic sampling variance and standard error of D2

"AAAOOA OEA 0OO0OAOE 00 EDakel wellbdocurieAt€ GeEgh Ayredti £2018; INews @ (2B02, 2006, 2008;
Siegel & Castellan, 1988) the behavior db, is known in the case ofdf(g) = 1. In the dichotomous case, the asymptotic
sampling variance ofD, can be approximated as
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si= ¢ =:an(n(g B) (P KN nf @

that leads to asymptotic standard error

psE 0= ASED < & o Al O (P H N a9

and, under the hypotheses of independent variables,

2 .. 2 1
ASH DO0)= ASE D) =5\/a ne-p W( P % (15)
ro\ i
where nj is the number of cases in the cellj, andn; is the number of testtakers in the row categoryi, and
Dr =N? _é (ﬂz)
i=1
G =a an +a a
h<i k § hisk j>
D =a aw *aa
h<i k 5 hixk j<
P= a NG
1]

Q=4a nQ - (16)
i
. 1T OA OEAO OEA & Oi 01l AR jpoq O jpoeQq ©aéh QdebnlilEqA(3).Ohesd
calculations are somewhat laborious manually. Somers (1980) offers a shotut method found also in Siegel &
#AOOAT T AT jpwywywq AT B: - AOORI O0OT T AT j¢cmpx

(@]
(@)

2
st = ¢ - 1)(s 4 17)
b2 ONr?(s- 1)
that leads to asymptotic standard error
4(r?- 1(s
ASH D1)= ASE D) ° M (18)

ONr(s-1)

Notably, the simplified approximation of sampling variance depends only on théimensionsof the variables. Hence, for
all combinations of response patterns with the identical dimensions in the crosstabulation, sampling variance and
related sampling error are identical.

To deriving the corresponding sampling variance for the case df(g) > 1, we remember that, because of Egs. (10), (12),
and (11), after simplified,

VAR( D)= VARconstant3 ) =onstaft VAR IP. (19)
Then, by using the basic laws of variance, we get

s5,=VAR(1 {D B (A 1)
=(A 1)° VAR D 1) (20)

=(A 41)° §2
where Ais as in Eq. (11). Then,

ASH DY)=(A1f ASE D) 2——3“’31)\/a (dec 9 (rRENY @

and, under the hypotheses of independent variables,
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ASE D0)=\[(A1} ASE D) 2——M\/a e § <(pp e

D ij

r

and, if using the simplified shortcut by Somers (1980),

. A(r?-1(s 4)(A ¥’
ASH D1) \/ NG 1) (23)

Notably, the eIement(A- 1)2 4 always and, hence, the sampling variance and standard error of the estimatesyare
Al xAUOG Oi Al 1 A0 OERB IWhed Eebtidghthe Aull hypdthesh .0 ) 8 (which is usually not a relevant
option in the item analysis settings though), we can use the statistic
7= D2
ASH DO)

This value is approximately normally distributed with mean O and standard deviation 1 when the null hypothesis is
true.

(24)

A numerical example of D2

As a numerical example of calculatin@®., assume a simple polytomous dataset withl =25 cases as in Table a@dapted

from Cox (1974, p. 17§ and Drasgow (1986, p. 70. Let us assume that the dataset would concern an iteghand the
score X

Table 3. A hypothetic dataset (Cox, 1974; Drasgow, 1986)

g X g X g X g X g X
0 72 177 187 1 99 2 85
0 88 178 188 1101 2 96
0 112 1 80 1 92 1 104 2 96
1 69 18 192 1 104 2 103
1 72 18 193 1108 2 104

Used by permisson of Biometric society

Table 4. Contingency table based in Table 3

X
69 72 77 78 80 81 85 86 87 88 92 93 96 99 101 103 104 108 112 SUM €)

g 0 0 1 0 o 0O OO 00O 1 0 0 0 0 o0 0O 0 O 1 3

1 111 11 1 0 1 1 1 2 1 0 1 1 0o 2 1 0 17

2 0O 0 0O OO O1 0 0 O 0 2 0 O 1 1 O 0 5

SsUuMg 1 2 1 1 1 1 1 1 1 2 2 1 2 1 1 1 3 1 1 25
yT OEA £E 000D iDdaldutatdd FoBthid, & O@@&ble is formed (Table 4). For the manual calculation of
31 1 ADQGng sums of concordant pairs ) and discordant pairs Q) are formed (see Siegel & Castellan, 1988;

AOORT OOOT 1 Adr these;, the cell¥r§Biendes are denoted hy;. For the concordant pairs, we calculate how
many cases are there in the cells below and to thé@ght of the celln;. These are denoted b)Nij*. Correspondingly, the

discordant pairs denoted by N; are found in the cells below and to théeft of the celln;. All possible values forNij+ and

N; are computed and these are multiped by the relatedn;. The number of all the pairs in the same direction is

P=3 N; Nf 4 20 1+122 6 % 6 4+2 32 9.
ij
Correspondingly, the number of the pairs in the opposite direction is

Q=é_r]ij' 4 B 1+9°%1 2 B 1+ 83 2431 b =
i
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"U OOET ¢ %N8 joqh OEA AOOH AO0AI O ALAABDAMIcdE@MED A AUESR I
= 2(P- Q) 290 57 66
i{g|X) = = = 0219
NZ- é(ngjz) 25°- (¥ 47 8) 302
j=1

For the dimension correction, we need the correction factoA (Eq. 11). With three categories in the item scalelf(g) = 2
and, hence,

_df(g)-1

a 1 061 1
A= = 3 0.k
df () g% di(g) 8 2 2

Because of Eq. (10), the estimate of the observed association of the item and scor®hig
B=1{D 9 (A )-1 (9219 1 (06128)1 03
with standard error

ASH 51) = «/( A -1)2 SASKE ) 0875 0242 0.21
10 AAT A[Ei AOEOh OEA AOOEI AOAOV T £ OEA T AOAOOGAA AmareAEAOE
correlation are ng =0.18E and, after corrected for the inflation, /E;p =0.139. The estimate of the inferred association

by polyserial correlation is EPS =0.216and the corresponding estimate by the polychoric correlation isFPC =0.12:
though the last value depends of the estimation method in some extent.

General characteristics of D

D, behaves according to the four principles set for the correction. First, the estimates Byare not corrected whendf(g)

= 1. Second, the estimates Hy, tend to be, generally, higher than those bygx v T oo and r ., and close to those byr

PC’ Ps’
although without the obvious overestimation (see Figures 5 and 6). Third, the higher @&f(g) the greater the correction
is in Dy. Fourth, D, does not correctD when item discrimination is deterministic and D = 1. Of the 13,392 items on the

simulation, none showed a value that was out of range regarding the limits of correlation.

Average level of item discrimination by df(g),
k = 13,392 items

correlation

— & - Average Rbs and Rps
0,60 —O=— Average D2

0.55 O —&— Average Rpc
' —{O— Average RgX
0,50% --0--Average Somer|s]
0,451] ---{J--- Average RgP
0,40

1 2 3 4 5 6 7 8 9 10 11 12 13 14
df(g)

Figure 5.Average estimates of selected indices of IDRéying df(g)

d Again, it is worth noting the specific wording when it comes to textbooks and outputs refaA A OT D3All thd geieaally known textbooks and
Ol £#O0xAOA DAAEACAO OOA OEA OAOI OOCAT OA AAPAT AAT 06 A O Oo%tEkérs afbr béy@ie A8 (1
ordered by the score, that is, the order in theiém depends on the order in the score.






